Phylogenetic Structure of Foliar Spectral Traits in Tropical Forest Canopies
نویسندگان
چکیده
The Spectranomics approach to tropical forest remote sensing has established a link between foliar reflectance spectra and the phylogenetic composition of tropical canopy tree communities vis-à-vis the taxonomic organization of biochemical trait variation. However, a direct relationship between phylogenetic affiliation and foliar reflectance spectra of species has not been established. We sought to develop this relationship by quantifying the extent to which underlying patterns of phylogenetic structure drive interspecific variation among foliar reflectance spectra within three Neotropical canopy tree communities with varying levels of soil fertility. We interpreted the resulting spectral patterns of phylogenetic signal in the context of foliar biochemical traits that may contribute to the spectral-phylogenetic link. We utilized a multi-model ensemble to elucidate trait-spectral relationships, and quantified phylogenetic signal for spectral wavelengths and traits using Pagel’s lambda statistic. Foliar reflectance spectra showed evidence of phylogenetic influence primarily within the visible and shortwave infrared spectral regions. These regions were also selected by the multi-model ensemble as those most important to the quantitative prediction of several foliar biochemical traits. Patterns of phylogenetic organization of spectra and traits varied across sites and with soil fertility, indicative of the complex interactions between the environmental and phylogenetic controls underlying patterns of biodiversity.
منابع مشابه
Phylogenetic ecology applied to enrichment planting of tropical native tree species
Enrichment planting within established plantations or secondary forests is a common strategy to enhance forest recovery, given that later successional forest species tend to have low dispersal and limited recruitment into these sites. It is difficult, however, to predict how species of seedlings will perform when planted under different overstory species. The field of phylogenetic ecology offer...
متن کاملEcological and evolutionary variation in community nitrogen use traits during tropical dry forest secondary succession.
We assessed the role of ecological and evolutionary processes in driving variation in leaf and litter traits related to nitrogen (N) use among tropical dry forest trees in old-growth and secondary stands in western Mexico. Our expectation was that legumes (Fabaceae), a dominant component of the regional flora, would have consistently high leaf N and therefore structure phylogenetic variation in...
متن کاملAmazonian functional diversity from forest canopy chemical assembly.
Patterns of tropical forest functional diversity express processes of ecological assembly at multiple geographic scales and aid in predicting ecological responses to environmental change. Tree canopy chemistry underpins forest functional diversity, but the interactive role of phylogeny and environment in determining the chemical traits of tropical trees is poorly known. Collecting and analyzing...
متن کاملOrganismic-Scale Remote Sensing of Canopy Foliar Traits in Lowland Tropical Forests
Airborne high fidelity imaging spectroscopy (HiFIS) holds great promise for bridging the gap between field studies of functional diversity, which are spatially limited, and satellite detection of ecosystem properties, which lacks resolution to understand within landscape dynamics. We use Carnegie Airborne Observatory HiFIS data combined with field collected foliar trait data to develop quantita...
متن کاملSpecific leaf area explains differences in leaf traits between congeneric savanna and forest trees
1. Leaf traits are commonly associated with the life history, distribution and resource requirements of a species. To improve our understanding of the ecological and physiological differences between tropical savanna and forest trees, we compared leaf traits of species native to savanna and gallery (riverine) forests in the Cerrado region of central Brazil. 2. Congeneric species pairs from 14 d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016